Name:

Block:

Seat:

Volume of Solids of Known cross-sections and Volumes of Revolutions

Disk Volume

Disk Volume= 
$$\pi \int_a^b [R(x)]^2 dx$$
 or  $\pi \int_a^d [R(y)]^2 dy$ 

Cone Example
Washer Volume

Washer Volume= 
$$\pi \int_{a}^{b} [R(x)]^{2} - [r(x)^{2}] dx$$
 or  $\pi \int_{c}^{d} [R(y)]^{2} - [r(y)^{2}] dy$ 

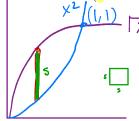
Volume of Solids with a Known Cross Section

Volume of Solids with a Known Cross Sections = 
$$\int_a^b A(x) dx$$
 or  $\int_c^d A(y) dy$ 

Where the most common cross sections are:

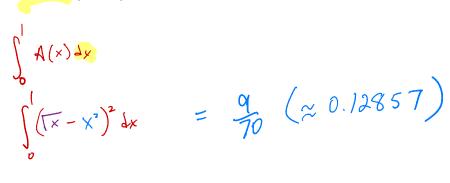
| Square  | Rectangle | Semicircle               | Triangle            | Equilateral $\triangle$     | Iso.Rt. $\triangle$                   |
|---------|-----------|--------------------------|---------------------|-----------------------------|---------------------------------------|
| $A=x^2$ | A = bh    | $A = \frac{1}{2}\pi r^2$ | $A = \frac{1}{2}bh$ | $A = \frac{\sqrt{3}}{4}s^2$ | $A = \frac{(leg)^2}{2}$ leg in region |
|         |           | _                        | _                   | _                           | $A = \frac{(hyp)^2}{4}$ hyp in region |

- 1. To see an interactive 3-D rendering, go to https://www.geogebra.org/m/XFgMaKTy
  - (a) Find the volume of the solid whose base is the enclosed area between  $y = \sqrt{x}$  and  $y = x^2$ , whose cross section ( $\perp$  to the x-axis) is a square ( $A = s^2$ )

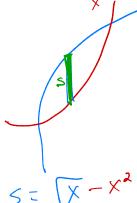


$$A = 5^2$$

$$A = ((x - x^2)^2)$$



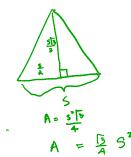
(b) Find the volume of the solid whose base is the enclosed area between  $y = \sqrt{x}$  and  $y = x^2$ , whose cross section ( $\perp$  to the x-axis) is a Equilateral Triangle  $A = \frac{\sqrt{3}}{4}s^2$ 



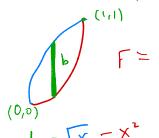
$$\frac{\sqrt{3}}{4} \int_{0}^{1} (\sqrt{x} - x^{2})^{2} dx = \frac{\sqrt{3}}{280}$$

$$(\approx .0 \le 5673)$$

$$\leq = \left( \frac{1}{x} - x^2 \right)$$



(c) Find the volume of the solid whose base is the enclosed area between  $y = \sqrt{x}$  and  $y = x^2$ , whose cross section ( $\perp$  to the x-axis) is a Semi-circle  $(A = \frac{1}{2}\pi r^2)$ 



$$II \int_{0}^{\infty} (Ix - x^{2})^{2} dx =$$

$$A = \frac{\pi^2}{2}$$

$$A = \frac{\pi}{2}$$

$$A = \frac{\pi}{2}$$

$$A = \frac{\pi}{2}$$

$$A = \frac{\pi}{8}$$

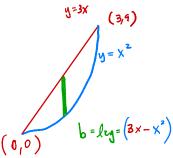
$$A = \frac{\pi}{8}$$

$$A = \frac{\pi}{8}$$

$$=\frac{\pi}{6}\left(\frac{9}{70}\right)=\frac{9\pi}{560}$$

## 2. Class 3-18 Examples from DeltaMath

(a) Let the region R be the area enclosed by the function  $f(x) = x^2$  and g(x) = 3x. If the region R is the base of a solid such that each cross section perpendicular to the x-axis is an isosceles right triangle with a leg in the region R, find the volume of the solid. You may use a calculator and round to the nearest thousandth.



$$b = \frac{b^2}{2}$$

 $V = \int_{0}^{3} A(x) dx = \int_{1}^{3} \frac{b^{2}}{2} dx$   $V = \frac{1}{2} \int_{0}^{3} (3x - x^{2})^{2} dx = \frac{81}{20}$ 

$$\sqrt{\frac{1}{z}} \int_{0}^{3} (3 \times -x^{2})^{2} dx = \frac{81}{20}$$

(b) Let the region R be the area enclosed by the function  $f(x) = e^x - 2$  and g(x) = 4x - 1. If the region R is the base of a solid such that each cross section perpendicular to the x-axis is a square, find the volume of the solid. You may use a calculator and round to the nearest thousand th.



$$S = (4 \times -1) - (e^{\times} - 2)$$

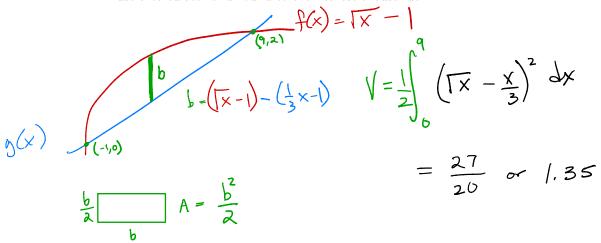
$$S = + \times - e^{\times} + |$$

$$V = \int_{0}^{A} (4x - e^{x} + 1)^{2} dx$$

$$S = (4x - 1) - (e^{x} - 2)$$

$$V = 7.913594707$$

(c) Let the region R be the area enclosed by the function  $f(x) = \sqrt{x} - 1$  and  $g(x) = \frac{1}{3}x - 1$ . If the region R is the base of a solid such that each cross section perpendicular to the x-axis is a **rectangle** whose height is half the length of its base in the region R, find the volume of the solid. You may use a calculator and round to the nearest thousandth.



(d) Let the region R be the area enclosed by the function  $f(x) = \ln(2x)$  and  $g(x) = \frac{1}{2}x - 1$ . If the region R is the base of a solid such that each cross section perpendicular to the x-axis is a **semi-circle** with diameters extending through the region R, find the volume of the solid. You may use a calculator and round to the nearest thousandth.

and round to the hearest thousand the fix) = 
$$\ln(2x)$$

$$\frac{1}{8} \left( \ln(2x) - \frac{x}{2} + 1 \right)^{2} dx$$

$$\frac{1}{8} \left( \ln(2x) - \frac{x}{2} + 1 \right)^{2} dx$$

Shere  $A = 0.2036568622$ 

and  $B = 7.385269058$ 

$$= 2.7702 + 8364$$

$$\frac{1}{2} \left( \frac{1}{2} \right)^{2} = \frac{11}{8} d^{2}$$